
Technologies
− J2EE
− J2SE
− J2ME
− Web Services
− Wireless
− XML
− Other

Downloads
− Early Access

Documentation
− APIs
− Tutorials
− Code Samples
− See All

Industry News

Developer Services
− Bug Database
− Forums
− Support
− See All

Java BluePrints

 Printable
Page

Articles Index

JavaServer Pages
TM

 : A Developer's Perspective
By Scott McPherson
April 2000

JavaServer
TM

 Pages(JSP) technology provides an easy way to create dynamic
web pages and simplify the task of building web applications that work with a
wide variety of web servers, application servers, browsers and development tools.
This article provides an overview of JSP from a developer's perspective, and
includes examples of JSP in action.

Introduction

JavaServer Pages technology allows web developers and designers to easily
develop and maintain dynamic web pages that leverage existing business
systems. As part of the Java

TM
 technology family, JSP enables rapid development

of web−based applications that are platform−independent. JSP separates user
interfaces from content generation, enabling designers to change the overall page
layout without altering the underlying dynamic content.

So what exactly is a JavaServer Page? In its basic form, a JSP page is simply an
HTML web page that contains additional bits of code that execute application
logic to generate dynamic content. This application logic may involve
JavaBeans

TM
, JDBC

TM
 objects, Enterprise Java Beans

TM
 (EJB), and Remote

Method Invocation (RMI) objects, all of which can be easily accessed from a JSP
page. For example, a JSP page may contain HTML code that displays static text
and graphics, as well as a method call to a JDBC object that accesses a database;
when the page is displayed in a user's browser, it will contain both the static
HTML content and dynamic information retrieved from the database.

The separation of user interface and program logic in a JSP page allows for a
very convenient delegation of tasks between web content authors and developers.
It also allows developers to create flexible code that can easily be updated and
reused. Because JSP pages are automatically compiled as needed, web authors
can make changes to presentation code without recompiling application logic.
This makes JSP a more flexible method of generating dynamic web content than
Java servlets, whose functionality JavaServer Pages extend.

JSP and Servlets

If you've worked with Java servlets you know that servlets allow you to create
dynamically−generated web pages that include data from server−side Java
objects. But you also know that the servlet approach to generating web pages is to
embed HTML tags and presentation code within a Java class. This means that
changes to presentation code requires modification and recompilation of the
servlet source file. Because web authors who design HTML pages may not be the
same folks as the developers who write servlet code, updating servlet−based web

JavaServer Pages(TM): A Developer's Perspective

Introduction 1

applications can be an involved process.

Enter JavaServer Pages, which are an extension of the Servlet API. In fact, JSP
pages are compiled into servlets before they are used, so they have all of the
benefits of servlets, including access to Java APIs. Because JSP pages are
generally presentation code with application logic embedded in them, they can be
thought of as "inside−out" servlets.

While JSP pages mainly provide a higher−level method of creating servlets, they
bring other benefits as well. Even if you're already content writing servlets for
web applications, there are plenty advantages to using JSP:

JSP pages easily combine static templates, including HTML or XML
fragments, with code that generates dynamic content.

•

JSP pages are compiled dynamically into servlets when requested, so
page authors can easily make updates to presentation code. JSP pages can
also be precompiled if desired.

•

JSP tags for invoking JavaBeans components manage these components
completely, shielding the page author from the complexity of application
logic.

•

Developers can offer customized JSP tag libraries that page authors
access using an XML−like syntax.

•

Web authors can change and edit the fixed template portions of pages
without affecting the application logic. Similarly, developers can make
logic changes at the component level without editing the individual pages
that use the logic.

•

In general, JSP allows developers to easily distribute application functionality to
a wide range of page authors. These authors do not have to know the Java
programming language or know anything about writing servlet code, so they can
concentrate on writing their HTML code while you concentrate on creating your
objects and application logic.

Creating JSP Pages

At first glance, a JSP page looks similar to an HTML (or XML) page−−both
contain text encapsulated by tags, which are defined between <angle brackets>.
While HTML tags are processed by a user's web browser to display the page, JSP
tags are used by the web server to generate dynamic content. These JSP tags can
define individual operations, such as making a method call to a JavaBean, or can
include blocks of standard Java code (known as scriptlets) that are executed when
the page is accessed.

To see how this all happens, here's a sample JSP page that includes both static
HTML content and dynamic data generated from a JavaBean. When the user
accesses this page, it prints the current day of the month and the year, and adds a
greeting based on the time of day (either "Good Morning" or "Good Afternoon").
For simplicity, JSP tags are shown in bold:

JavaServer Pages(TM): A Developer's Perspective

Creating JSP Pages 2

<HTML>
<%@ page language="java" imports="java.util.*" %>

<H1>Welcome</H1>

<P>Today is </P>
<jsp:useBean id="clock" class="jspCalendar" />

Day: <%= clock.getDayOfMonth() %>
Year: <%= clock.getYear() %>

<%−− Check for AM or PM −−%>
<%! int time =
Calendar.getInstance().get(Calendar.AM_PM); %>
<%
if (time == Calendar.AM) {
%>
Good Morning
<%
}
else {
%>
Good Afternoon
<%
}
%>
<%@ include file="copyright.html" %>
</HTML>

The above example demonstrates the simplicity of JSP, and also offers a glimpse
of the various components of a JSP page. These components include the
following:

JSP actions (or JSP tags) perform a variety of functions and extend the
capabilities of JSP. JSP actions use XML−like syntax, and are used to
(among other things) manage JavaBean components. In the sample page,
a jsp:useBean action initializes a JavaBean that is used in subsequent
portions of the page:

•

<jsp:useBean id=="clock" class=="jspCalendar" />

If the sample page had needed to get or set properties of this bean, other
JSP actions would have been given, using the following syntax:

<jsp:getProperty name="bean" property="property" />
<jsp:setProperty name="bean" property="property"
value="value" />

Directives are instructions that are processed by the JSP engine when the
page is compiled to a servlet. Directives are used to set page−level
instructions, insert data from external files, and specify custom tag

•

JavaServer Pages(TM): A Developer's Perspective

Creating JSP Pages 3

libraries. Directives are defined between <%@ and %>. In the
above example, directives define the language of
the page (Java), import the Java classes needed
by the embedded code, and specify that the
contents of an HTML file should be inserted at
the bottom of the page:

<%@ page language=="java" imports=="java.util.*" %>
<%@ include file=="copyright.html" %>

Declarations are similar to variable declarations in Java, and define
variables for subsequent use in expressions or scriptlets. Declarations are
defined between <%! and %>. In the above sample page an int is
declared and given a value corresponding to the time of day (AM or PM):

•

<%! int time =
Calendar.getInstance().get(Calendar.AM_PM); %>

Expressions are variables or constants that are inserted into the data
returned by the web server, and are defined with the <%= and %>. In the
sample page, expressions make calls on a JavaBean component and insert
the resulting data into the page:

•

<%= clock.getDayOfMonth() %>
<%= clock.getYear() %>

Scriptlets are blocks of Java code embedded within a JSP page. Scriptlet
code is inserted verbatim into the servlet generated from the page, and is
defined between <% and %>. A scriptlet in the above sample determines
the time of day and greets the user accordingly:

•

<%
if (time == Calendar.AM) {
%>
Good Morning
<%
}
else {
%>
Good Afternoon
<%
}
%>

Comments are similar to HTML comments, and are stripped from the
page by the JSP engine when it is executed. This means that JSP
comments are not returned to the user's browser. Unlike HTML
comments, which are given between <!−− and −−> tags, JSP comments
are given between <%−− and −−%>. For example:

•

<%−− Check for AM or PM −−%>

JavaServer Pages(TM): A Developer's Perspective

Creating JSP Pages 4

Using Custom Tags

Although you can embed Java code within a JSP page to execute server−side
processing, JSP also supports an alternative method of inserting dynamic content
with custom tags, a mechanism that allows you to invent your own HTML−like
tags for your JSP pages. In other words, your JSP pages can generate dynamic
content using simple tag syntax instead of Java code. Custom tags are incredibly
useful because they provide further separation of responsibilities between
developers (who create the custom tags) and page authors (who use them).

Creating a custom tag is more complicated than using simple scriptlets in JSP
pages, since custom tags require several steps to connect your JSP code to the
business logic of your Java components. However, custom tags are also easier to
distribute and reuse, and support for custom tags is being implemented in JSP
authoring tools.

The following example shows a JSP page that generates dynamic content (in this
case, today's lunch special) using a custom tag. Notice that in this case we don't
need to import Java classes, declare variables, or write any Java code:

<HTML>
<%@ taglib uri="/tlds/menuDB.tld" prefix="menu" %>

<H1>Today's Menu</H1>

<P>Lunch</P>
<%@ include file="lunch_menu.html" %>

<P>Our Special of the Day</P>
<menu: insertCatchOfDay meal="lunch" >

</HTML>

The syntax for this page is obviously simpler than the scriptlet example shown
the previous section, since it doesn't involve initializing objects and executing
their methods. But the JSP page code is only part of the story; for each custom
tag, the following three components are present:

JSP pages that include the custom tag, such as the above code fragment
that uses the insertCatchOfDay custom tag. Before using a custom
tag, a page must specify the taglib directive to provide the location of
the tag library descriptor (see below) that defines the tag. When
executing a custom tag, a page typically defines one or more tag
attributes (such as meal in this example) to determine dynamic content.

•

A tag library descriptor, an XML file that defines the custom tag and
connects it to its tag handler class. A tag library descriptor includes the
various attributes of the tag, the name (and location) of the tag handler
class associated with it, and any other information that JSP engine needs
to process the custom tag.

•

A tag handler, a Java class that executes the operations associated with
the custom tag. For example, for the above insertCatchOfDay tag,

•

JavaServer Pages(TM): A Developer's Perspective

Using Custom Tags 5

the tag handler is the Java class that executes the database query to
retrieve the appropriate menu item.

We've already seen a JSP page that uses a custom tag, so let's look at the other
two components.

Tag Handler

A tag handler is a Java class that is somewhat similar to a servlet. Whereas
servlets implement the Servlet interface and are typically executed by an
HTML GET or POST request, tag handlers implement a Tag interface
(javax.servlet.jsp.Tag) and are executed when a custom tag is
processed by the JSP engine. Each tag handler implements the method

public int doStartTag()

which defines the action taken when the custom tag is processed. If the custom
tag includes attributes then the tag handler must define these attributes and get/set
methods for each. For example, when defining the tag handler for the
insertCatchOfDay custom tag shown above, we must define the meal
attribute and its associated get and set methods:

private String meal = null;

public void setMeal(String s) {
meal = s;
}
public String getMeal() {
return meal;
}

Tag Library Descriptor

If you spend all of your time working with Java technology and don't know a
thing about XML then the tag library descriptor component of JSP programming
may seem strange. Have no fear, you don't need to learn a new language or
master a whole new way of programming. Tag library descriptors simply use
HTML−like tag syntax to define the name of your custom tag and its attributes,
much like defining an object.

The following tag library descriptor defines the insertCatchOfDay tag used
above. Note that this file defines the name of the custom tag, its attributes, and
the associated tag handler class:

<? xml version="1.0" ?>
<taglib>
<tag>
<name>insertCatchOfDay</name>
<tagclass>com.sun.CatchOfDayHandler</tagclass>
<info>

JavaServer Pages(TM): A Developer's Perspective

Tag Handler 6

Queries menu database for the catch of the day.
</info>

<attribute>
<name>meal</name>
</attribute>
</tag>

</taglib>

Along with defining the name of an attribute, a tag library descriptor can also
define its data type and specify whether the attribute is required; this allows the
JSP engine to do certain error checking before the tag handler is executed.
Additional information, such as a name and version number for the library, may
be included in a tag library descriptor for use with JSP authoring tools. (See the
JSP 1.1 specification for complete information on tag library descriptor syntax.)

More Examples

This section contains additional examples of JSP in action. In the first example, a
JSP page uses the HTTP request object (HttpServletRequest) to determine
the user's browser version and returns appropriate content from one of three
HTML pages. This page could be used to serve up more sophisticated content to
newer browsers while maintaining support for older browsers:

<!−− example1.jsp −−>
<%@ page language=="java" info="Example JSP #1" %>
<html>
<body>
<%! String agent; %>
<%
agent = request.getHeader("User−Agent");
if (agent.startsWith("Mozilla/4.0") {
%>
<%−− Return content for 4.0 browsers −−%>
<%@ include file="ver4.html" %>
<%
}
else if (agent.startsWith("Mozilla/3.0") {
%>
<%−− Return content for 3.0 browsers −−%>
<%@ include file="ver3.html" %>
<%
}
else {
%>
<%−− Return content for other/unknown browsers −−%>
<%@ include file="other.html" %>
<%
}
%>

JavaServer Pages(TM): A Developer's Perspective

More Examples 7

</body>
</html>

Note that this page accesses the HTTP request object without declaring or
initializing the object. Both the request and response
(HttpServletResponse) objects are always implicitly available to JSP
pages. As with servlets, JSP pages can use the request object to get parameter
values from HTML forms, as in the following example:

<!−−example2.jsp −−>
<%@ page language="java" info="Example JSP #2" %>
<html>
<body>
<%@ include file="header.html" %>
<jsp:useBean id="db" class="DbBean" />
<%! String selections[], info; %>
<p>Here are your current selections:</p>
<%
<!−− Get the form parameter values −−>
selections = request.getParameterValues("items");
if (selections != null) {
%>
<%
for(int x = 0; x < selections.length; x++) {
%>
<%= selections[x] %> : <%= db.getInfo(selections[x])
%>
<%
}
%><%
}
else {
%>
<p>(no items selected)</p>
<%
}
%>

<%@ include file="footer.html" %>
</body>
</html>

In this example, static HTML content that defines page presentation is inserted
with include directives, while dynamic content is generated from parameter
values retrieved from the request object. After each parameter value is read, a
JavaBean component is queried for information about each selection. Using
beans in JSP pages this way makes it easy to retrieve dynamic web content from
a database.

JavaServer Pages(TM): A Developer's Perspective

More Examples 8

Conclusion

If you're looking for a convenient way to create web applications that connect to
server−side Java components, JavaServer Pages is the way to go. Besides the
inherent portability of Java and JSP's ready access to technologies like EJB, RMI,
JDBC, and JavaBeans, the separation of HTML presentation code and application
logic makes JSP pages very easy for organizations to work with. In fact, because
web authors can create JSP pages with little or no help from you, the Java
developer, you may no longer need to worry about creating web pages and
writing HTML code.

About the Author

Scott McPherson is the founder of MochaMail Corporation, a Silicon Valley
Java technology start−up. MochaMail uses a variety of Java technologies to
provide the next generation in web−based email access. Scott can be reached at
scottm@mochamail.com.

Reader Feedback

Tell us what you think of this article.

 Very worth reading Worth reading Not worth reading

If you have other comments or ideas for future articles, please type them here:

[This page was last updated Aug−14−2002]

Company Info | Licensing | Employment | Press | Help |
JavaOne | Java Community Process | Java Wear and Books

Unless otherwise licensed, code in all
technical manuals herein (including
articles,
FAQs, samples) is provided under this
License.

Copyright © 1995−2003 Sun
Microsystems, Inc.

All Rights Reserved. Terms of Use.
Privacy Policy.

JavaServer Pages(TM): A Developer's Perspective

Conclusion 9

